Research Article

Distance Field-Based Convolutional Neural Network for Edge Detection

Table 4

The statistic comparison with some competitors on BSDS500 dataset.

MethodODSOISFPS

Canny [7]0.6110.67628
EGB [23]0.6140.65810
MShift [24]0.5980.6451/5
gPb-UCM [25]0.7290.7551/240
Sketch Tokens [26]0.7270.7461
MCG [4]0.7440.7771/18
SE [9]0.7430.7632.5
OEF [27]0.7460.7702/3
DeepContour [16]0.7570.7761/30†
DeepEdge [17]0.7530.7721/1000†
HFL [28]0.7670.7885/6†
N4-Fields [29]0.7530.7691/6†
HED [18]0.7880.80830†
RDS [30]0.7920.81030†
CEDN [31]0.7880.80410†
MIL + G-DSN + MS + NCuts [32]0.8130.8311
RCF [19]0.8060.82330†
RCF-MS [19]0.8110.8308†
Experiment 4.2.10.8020.81817†
Experiment 4.2.20.8130.83117†
Experiment 4.2.3 (DF-CNN)0.8180.83316†
PiDiNet [20]0.8070.82392†
PiDiNet-L [20]0.8000.815128†
PiDiNet-Small [20]0.7980.814148†
PiDiNet-Tiny [20]0.7890.806152†

† means GPU time.