Research Article
Distance Field-Based Convolutional Neural Network for Edge Detection
Table 4
The statistic comparison with some competitors on BSDS500 dataset.
| Method | ODS | OIS | FPS |
| Canny [7] | 0.611 | 0.676 | 28 | EGB [23] | 0.614 | 0.658 | 10 | MShift [24] | 0.598 | 0.645 | 1/5 | gPb-UCM [25] | 0.729 | 0.755 | 1/240 | Sketch Tokens [26] | 0.727 | 0.746 | 1 | MCG [4] | 0.744 | 0.777 | 1/18 | SE [9] | 0.743 | 0.763 | 2.5 | OEF [27] | 0.746 | 0.770 | 2/3 | DeepContour [16] | 0.757 | 0.776 | 1/30† | DeepEdge [17] | 0.753 | 0.772 | 1/1000† | HFL [28] | 0.767 | 0.788 | 5/6† | N4-Fields [29] | 0.753 | 0.769 | 1/6† | HED [18] | 0.788 | 0.808 | 30† | RDS [30] | 0.792 | 0.810 | 30† | CEDN [31] | 0.788 | 0.804 | 10† | MIL + G-DSN + MS + NCuts [32] | 0.813 | 0.831 | 1 | RCF [19] | 0.806 | 0.823 | 30† | RCF-MS [19] | 0.811 | 0.830 | 8† | Experiment 4.2.1 | 0.802 | 0.818 | 17† | Experiment 4.2.2 | 0.813 | 0.831 | 17† | Experiment 4.2.3 (DF-CNN) | 0.818 | 0.833 | 16† | PiDiNet [20] | 0.807 | 0.823 | 92† | PiDiNet-L [20] | 0.800 | 0.815 | 128† | PiDiNet-Small [20] | 0.798 | 0.814 | 148† | PiDiNet-Tiny [20] | 0.789 | 0.806 | 152† |
|
|
† means GPU time.
|