Research Article
TAFM: A Recommendation Algorithm Based on Text-Attention Factorization Mechanism
Table 3
Performance of different models in the test set.
| Algorithm model | Model accuracy | AUC | Log_loss |
| AFM | 0.82291 | 0.63090 | 0.4506 | CCPM | 0.82296 | 0.63170 | 0.4504 | DCN | 0.82564 | 0.69840 | 0.4245 | DeepFM | 0.82543 | 0.69830 | 0.4247 | FNN | 0.82554 | 0.69740 | 0.425 | MLR | 0.82336 | 0.65860 | 0.4412 | NFM | 0.82528 | 0.69670 | 0.4254 | PNN | 0.82585 | 0.69970 | 0.4239 | xDeepFM | 0.82352 | 0.63430 | 0.4491 | wDeepFM | 0.82560 | 0.69790 | 0.4248 | TAFM | 0.82694 | 0.73018 | 0.4144 |
|
|