Research Article
TAFM: A Recommendation Algorithm Based on Text-Attention Factorization Mechanism
Table 5
Results of ablation experiment.
| Algorithm model | Model accuracy | AUC | Log_loss |
| TAFM_ae | 0.82497 | 0.69691 | 0.4266 | TAFM_a | 0.82490 | 0.69709 | 0.4265 | TAFM_ae_a | 0.82485 | 0.69743 | 0.4264 | TAFM_l | 0.82478 | 0.69659 | 0.4272 | TAFM_b | 0.82573 | 0.69546 | 0.4262 | TAFM_c | 0.82515 | 0.69596 | 0.4265 | TAFM_l_b | 0.82543 | 0.69676 | 0.4269 | TAFM_l_c | 0.82516 | 0.69707 | 0.4266 | TAFM_b_c | 0.82607 | 0.69815 | 0.4251 | TAFM_b_l_c | 0.82051 | 0.69554 | 0.4268 | TAFM | 0.82694 | 0.73018 | 0.4144 |
|
|