Research Article

An Efficient Machine Learning Model Based on Improved Features Selections for Early and Accurate Heart Disease Predication

Algorithm 1

Heart disease classification; take input features, preprocessing, feature selection, and classification.
(1)Input: K, f
(2)Output: K Classification with matrix evaluation
(3)if Dk ≠ 0 then
(4)procedure (features (f), K)
(5)  f [V] nk+1/k ←Null
(6)  z = (x - u)/s
(7)  dataset fr [0, 1] ← M
(8) end procedure
(9)Procedure Feature Extraction (fk)
(10)  (Lf1, Lf2, Lf3……Lfn) ← Lk
(11)  (Af1, Af2, Af3……Afn) ← Ak
(12)  (Mf1, Mf2, Mf3……Mfn) ← Mk
(13)  (Vf1, Vf2, Vf3……. Vfn) ← Vk
(14)  (Mf1, Mf2, Mf3……. Mfn) ← Mk
(15)  Return (f1, f2, f3……fn) ← k
(16) end procedure
(17)procedure C ((f1, f2, f3……fn), Gk)
(18)  M ⇐ Tk ((f1, f2, f3……fn), Gk)
(19)  Pk ⇐ TTk (M, (f1, f2, f3……fn))
(20)  Cr ⇐ matrix (Pk, Gk)
(21)  return Pk
(22) end procedure
(23)else
(24)Dk = 0 ← empty
(25)end if
(26)until: All the features (K) are Classified(C)
(27)Exit