Research Article

An Efficient Machine Learning Model Based on Improved Features Selections for Early and Accurate Heart Disease Predication

Table 1

Previous literature review.

ReferenceHeart disease typeApplicationML algorithmApproachEvaluations (%)Data

[23]Coronary diseaseClassificationCA, BAUndersampling71.1425 patients data
[24]General heart diseaseClassificationMLPUndersampling80Cleveland dataset
[25]General heart diseaseClassificationANNSampling84Cleveland dataset
[26]General heart diseaseThree-phase system for the predictionANNData sampling85Uci
[5]Heart diseaseEnsemble-based predictive modelANNUndersampling91Cleveland heart disease
[27]Coronary Heart diseaseAdaptive fuzzy ensembleGA, MS-psoFeature selection92.31Public dataset
[28]Coronary artery diseaseClassificationSVM, NBFeature selection96Z-Alizadeh sani dataset
[29]Cardiac diseaseClassificationSVM, DT, KNN, etc.Focal loss86Cleveland heart disease
[30]Cardiac arrestScoring system classificationSVMUndersampling78.81386 records
[31]Heart disease (general)DetectionNB, SMOFeatures selection83Cleveland dataset
[32]Coronary heart diseasePredicationSVM, KNN, etc.SMOTE72African heart disease data
[33]ArrhythmiaDiagnosingSVM, KNN, DT, RFSMOTE92MIT-BIH
[34]Heart arrhythmiaDetectionXGBoost classifierUndersampling87Biobank UK dataset
[35]Chronic heart failure (HF)Incremental and boosting features valueDT, RF, SVM, KNN, LMTUndersampling89487 patient data
[36]Cardiovascular diseasesClassificationRF, DTSMOTE914270 patients data
[37]Heart disease (general)Features methodLda, KNN, SVM, RFSampling84UCI dataset
[38]Heart arrhythmiaClassificationMarine predators algorithm, SGD, CNNSampling99.47MIT-BIH arrhythmia, European, INCART
[39]Heart arrhythmiaClassificationMarine predators algorithm, DNN, CNNSampling99MIT-BIH, EDB, and INCART
[38]Heart arrhythmiaClassificationManta ray foraging optimization, SVM, LBP, HOSSampling98.26MIT-BIH arrhythmia