| Reference | Heart disease type | Application | ML algorithm | Approach | Evaluations (%) | Data |
| [23] | Coronary disease | Classification | CA, BA | Undersampling | 71.1 | 425 patients data | [24] | General heart disease | Classification | MLP | Undersampling | 80 | Cleveland dataset | [25] | General heart disease | Classification | ANN | Sampling | 84 | Cleveland dataset | [26] | General heart disease | Three-phase system for the prediction | ANN | Data sampling | 85 | Uci | [5] | Heart disease | Ensemble-based predictive model | ANN | Undersampling | 91 | Cleveland heart disease | [27] | Coronary Heart disease | Adaptive fuzzy ensemble | GA, MS-pso | Feature selection | 92.31 | Public dataset | [28] | Coronary artery disease | Classification | SVM, NB | Feature selection | 96 | Z-Alizadeh sani dataset | [29] | Cardiac disease | Classification | SVM, DT, KNN, etc. | Focal loss | 86 | Cleveland heart disease | [30] | Cardiac arrest | Scoring system classification | SVM | Undersampling | 78.8 | 1386 records | [31] | Heart disease (general) | Detection | NB, SMO | Features selection | 83 | Cleveland dataset | [32] | Coronary heart disease | Predication | SVM, KNN, etc. | SMOTE | 72 | African heart disease data | [33] | Arrhythmia | Diagnosing | SVM, KNN, DT, RF | SMOTE | 92 | MIT-BIH | [34] | Heart arrhythmia | Detection | XGBoost classifier | Undersampling | 87 | Biobank UK dataset | [35] | Chronic heart failure (HF) | Incremental and boosting features value | DT, RF, SVM, KNN, LMT | Undersampling | 89 | 487 patient data | [36] | Cardiovascular diseases | Classification | RF, DT | SMOTE | 91 | 4270 patients data | [37] | Heart disease (general) | Features method | Lda, KNN, SVM, RF | Sampling | 84 | UCI dataset | [38] | Heart arrhythmia | Classification | Marine predators algorithm, SGD, CNN | Sampling | 99.47 | MIT-BIH arrhythmia, European, INCART | [39] | Heart arrhythmia | Classification | Marine predators algorithm, DNN, CNN | Sampling | 99 | MIT-BIH, EDB, and INCART | [38] | Heart arrhythmia | Classification | Manta ray foraging optimization, SVM, LBP, HOS | Sampling | 98.26 | MIT-BIH arrhythmia |
|
|