Research Article
Pavement Disease Detection through Improved YOLOv5s Neural Network
Table 3
Comparison of different model performance metrics.
| Model | Recall/% | Accuracy/% | mAP/% |
| YOLOv3 | 51.43 | 82.16 | 73.93 | YOLOv3 + Four scale layers | 52.86 | 83.74 | 75.06 (73.93 + 1.13) | YOLOv5s | 72.31 | 92.31 | 84.77 | ShuffleNetv2 | 69.92 | 82.57 | 77.48 | MobileNetv3 | 71.62 | 81.45 | 79.35 | YOLOv5s + Mosaic | 72.42 | 92.94 | 85.32 (84.77 + 0.55) | YOLOv5s + Ghost_backbone | 73.35 | 92.79 | 85.93 (84.77 + 1.16) | YOLOv5s + Ghost_backbone + Mosaic | 73.38 | 93.17 | 86.44 (84.77 + 1.67) | YOLOv5s + ShuffleNetv2 | 73.27 | 92.58 | 85.30 (84.77 + 0.53) | YOLOv5s + ShuffleNetv2 + Mosaic | 73.44 | 93.21 | 85.71 (84.77 + 0.94) | YOLOv5s + Mobilenetv3 | 74.08 | 93.01 | 85.88 (84.77 + 1.11) | YOLOv5s + Mobilenetv3 + Mosaic | 74.56 | 93.41 | 86.29 (84.77 + 1.52) | Our Ghost-YOLOv5s | 76.39 | 95.18 | 87.69 (84.77 + 2.92) | Our Ghost-YOLOv5s + Mosaic | 76.97 | 95.56 | 88.17 (84.77 + 3.40) |
|
|