Research Article

Pavement Disease Detection through Improved YOLOv5s Neural Network

Table 3

Comparison of different model performance metrics.

ModelRecall/%Accuracy/%mAP/%

YOLOv351.4382.1673.93
YOLOv3 + Four scale layers52.8683.7475.06 (73.93 + 1.13)
YOLOv5s72.3192.3184.77
ShuffleNetv269.9282.5777.48
MobileNetv371.6281.4579.35
YOLOv5s + Mosaic72.4292.9485.32 (84.77 + 0.55)
YOLOv5s + Ghost_backbone73.3592.7985.93 (84.77 + 1.16)
YOLOv5s + Ghost_backbone + Mosaic73.3893.1786.44 (84.77 + 1.67)
YOLOv5s + ShuffleNetv273.2792.5885.30 (84.77 + 0.53)
YOLOv5s + ShuffleNetv2 + Mosaic73.4493.2185.71 (84.77 + 0.94)
YOLOv5s + Mobilenetv374.0893.0185.88 (84.77 + 1.11)
YOLOv5s + Mobilenetv3 + Mosaic74.5693.4186.29 (84.77 + 1.52)
Our Ghost-YOLOv5s76.3995.1887.69 (84.77 + 2.92)
Our Ghost-YOLOv5s + Mosaic76.9795.5688.17 (84.77 + 3.40)