Research Article

Computer-Aided Multiclass Classification of Corn from Corn Images Integrating Deep Feature Extraction

Table 2

Parameters of the models used in the study.

ModelsParameters

mSVMCost (C): 1.00
Regression loss epsilon (Ɛ): 0.10
Regression cost (C): 1.00
Complexity bound (v): 0.50 g: auto
Numerical tolerance: 0.0010
Iteration limit: 100
Function: radial basis kernel

BAMaximum frequency: 2
Minimum frequency: 0
Constant.alfa: 0.9
Constant.gamma: 0.9
Maximum loudness: 2
Maximum pulse rate: 1
Number of solutions: 10
Maximum number of iterations: 100

WOANumber of agents: 10
Maximum number of iterations: 100
Maximum frequency: 1
Minimum frequency: 0
Problem dimension: same as number of features

GWOAlfa: 0,99
Beta: 0,01
Tres: 3
Number of wolves: 10
Maximum number of iterations: 100