Research Article
A Transformer-Based Network for Change Detection in Remote Sensing Using Multiscale Difference-Enhancement
Table 1
The average quantitative results of different CD methods on two datasets.
| Method | STANet | SNUNet | BIT | ChangeFormer | TUNetCD (ours) |
| LEVIR-CD | Precision (%) | 83.81 | 89.18 | 89.24 | 92.05 | 93.23 | Recall (%) | 91.00 | 87.17 | 89.37 | 88.80 | 91.98 | F1 (%) | 87.26 | 88.16 | 89.31 | 90.40 | 92.36 | IoU (%) | 77.40 | 78.83 | 80.68 | 82.48 | 86.22 |
| DSIFN-CD | Precision (%) | 67.71 | 60.60 | 68.36 | 88.48 | 88.94 | Recall (%) | 61.68 | 72.89 | 70.18 | 84.94 | 85.12 | F1 (%) | 64.56 | 66.18 | 69.26 | 86.67 | 87.95 | IoU (%) | 47.66 | 49.45 | 52.97 | 76.48 | 76.98 |
|
|