Research Article
Cross-Project Defect Prediction Based on Two-Phase Feature Importance Amplification
Table 2
F1-measure, AUC, and MCC of model with filtering (Model 1) and model without filtering (Model 2).
| | F1-measure | AUC | MCC | | Model 1 | Model 2 | Model 1 | Model 2 | Model 1 | Model 2 |
| EQ-JDT | 0.415 | 0.790 | 0.632 | 0.873 | 0.232 | 0.735 | EQ-LC | 0.300 | 0.761 | 0.726 | 0.903 | 0.265 | 0.738 | EQ-ML | 0.242 | 0.742 | 0.545 | 0.875 | 0.061 | 0.702 | EQ-PDE | 0.291 | 0.776 | 0.600 | 0.864 | 0.146 | 0.740 | JDT-EQ | 0.276 | 0.833 | 0.576 | 0.862 | 0.291 | 0.719 | JDT-LC | 0.322 | 0.752 | 0.602 | 0.875 | 0.330 | 0.726 | JDT-ML | 0.283 | 0.745 | 0.584 | 0.883 | 0.229 | 0.707 | JDT-PDE | 0.247 | 0.761 | 0.569 | 0.866 | 0.233 | 0.721 | LC-EQ | 0.196 | 0.831 | 0.554 | 0.862 | 0.261 | 0.710 | LC-JDT | 0.592 | 0.816 | 0.727 | 0.911 | 0.516 | 0.768 | LC-ML | 0.347 | 0.765 | 0.626 | 0.855 | 0.243 | 0.732 | LC-PDE | 0.256 | 0.787 | 0.572 | 0.866 | 0.234 | 0.755 | ML-EQ | 0.183 | 0.855 | 0.550 | 0.886 | 0.251 | 0.755 | ML-JDT | 0.396 | 0.787 | 0.623 | 0.883 | 0.397 | 0.730 | ML-LC | 0.219 | 0.824 | 0.562 | 0.925 | 0.316 | 0.806 | ML-PDE | 0.217 | 0.763 | 0.559 | 0.865 | 0.229 | 0.724 | PDE-EQ | 0.238 | 0.873 | 0.560 | 0.897 | 0.232 | 0.785 | PDE-JDT | 0.477 | 0.806 | 0.666 | 0.881 | 0.366 | 0.754 | PDE-LC | 0.372 | 0.784 | 0.620 | 0.873 | 0.397 | 0.763 | PDE-ML | 0.292 | 0.754 | 0.594 | 0.853 | 0.178 | 0.718 | Average | 0.308 | 0.790 | 0.602 | 0.878 | 0.270 | 0.739 |
|
|
The values in bold are results with the best performance of each instance.
|