Research Article
Users’ Rating Predictions Using Collaborating Filtering Based on Users and Items Similarity Measures
Table 8
Comparison of Applied Algorithms on Datasets as a whole.
| Algorithms | RMSE | MAE | ML 100k | ML 1M | Ciao DVD | ML | ML 1M | Ciao DVD | 100k |
| User K-NN (cosine similarity) | 0.947 | 0.899 | 0.975 | 0.746 | 0.706 | 0.737 | User K-NN (Pearson correlation) | 0.939 | 0.887 | 0.969 | 0.739 | 0.696 | 0.737 | Item K-NN (cosine similarity) | 0.934 | 0.883 | 0.975 | 0.736 | 0.694 | 0.736 | Item K-NN (Pearson similarity) | 0.933 | 0.879 | 0.964 | 0.734 | 0.690 | 0.734 | Slope one | 0.951 | 0.902 | 1.093 | 0.749 | 0.711 | 0.816 | Random | 2.105 | 2.138 | 2.307 | 1.723 | 1.762 | 1.888 | Global average | 1.131 | 1.115 | 1.079 | 0.950 | 0.933 | 0.833 | User item baseline | 0.952 | 0.909 | 0.976 | 0.755 | 0.720 | 0.762 | Matrix factorization | 0.988 | 0.954 | 1.107 | 0.771 | 0.746 | 0.860 | Biased MF | 0.992 | 0.964 | 1.032 | 0.770 | 0.752 | 0.797 | Factor wise MF | 0.989 | 0.940 | 1.622 | 0.765 | 0.731 | 1.215 |
|
|