Research Article
[Retracted] IoT-Based Hybrid Ensemble Machine Learning Model for Efficient Diabetes Mellitus Prediction
Table 3
Comparison of statistical measurement for various classification techniques.
| ā | Logistic regression | K-nearest neighbor | Support vector machine | Proposed model | Collected dataset | Pima dataset | Collected dataset | Pima dataset | Collected dataset | Pima dataset | Collected dataset | Pima dataset |
| Accuracy | 0.872 | 0.744 | 0.739 | 0.708 | 0.888 | 0.744 | 0.984 | 0.750 | Error | 0.127 | 0.255 | 0.261 | 0.291 | 0.112 | 0.255 | 0.016 | 0.250 | Sensitivity | 0.923 | 0.775 | 0.778 | 0.748 | 0.898 | 0.775 | 0.987 | 0.789 | Specificity | 0.764 | 0.666 | 0.702 | 0.603 | 0.816 | 0.666 | 0.916 | 0.661 | Precision | 0.885 | 0.856 | 0.816 | 0.832 | 0.933 | 0.856 | 0.991 | 0.840 | F-measure | 0.903 | 0.813 | 0.797 | 0.787 | 0.915 | 0.813 | 0.989 | 0.813 | MCC | 0.732 | 0.416 | 0.503 | 0.331 | 0.764 | 0.416 | 0.963 | 0.436 | Kappa | 0.727 | 0.470 | 0.516 | 0.419 | 0.713 | 0.466 | 0.922 | 0.488 | AUC | 0.908 | 0.765 | 0.916 | 0.815 | 0.893 | 0.771 | 0.984 | 0.978 |
|
|