Research Article
MFOC-CliqueNet: A CliqueNet-Based Optimal Combination of Multidimensional Features Classification Method for Large-Scale Laser Point Clouds
Table 4
Weighted combination results of multidimensional features (%).
| 3D : 2D | Class | Pole | Vegetation | Wire | Ground | Facade | OA |
| 0.9 : 0.1 | 0.028 | 0.965 | 0.190 | 0.979 | 0.716 | 0.9822 | 0.8 : 0.2 | 0.032 | 0.902 | 0.299 | 0.962 | 0.475 | 0.9762 | 0.7 : 0.3 | 0.083 | 0.837 | 0.555 | 0.935 | 0.474 | 0.9744 | 0.6 : 0.4 | 0.039 | 0.812 | 0.407 | 0.971 | 0.594 | 0.9801 | 0.4 : 0.6 | 0.025 | 0.803 | 0.232 | 0.913 | 0.853 | 0.9724 | 0.3 : 0.7 | 0.135 | 0.677 | 0.299 | 0.982 | 0.842 | 0.9783 | 0.2 : 0.8 | 0.023 | 0.777 | 0.678 | 0.981 | 0.615 | 0.9750 | 0.1 : 0.9 | 0.076 | 0.519 | 0.276 | 0.977 | 0.907 | 0.9690 |
|
|
The bold values mean optimal overall classification results after weighted combination of multidimensional features of point cloud.
|