Research Article

[Retracted] A Family of Optimal Multiple-Weight Optical Orthogonal Codes for Fiber-Optic Networks

Table 5

The base blocks of 30-regular CDP ({3, 4}, 1, {1/3, 2/3}; m)s of Example 4.


{(0,0),(2,1), (4,3), (2,10)}, {(0,0),(3,23), (4,7),(0,8) }, {(0,0), (0,34),(0,3)}, {(0,0),(3,13),(1,10),(4,2)}, {(0,0), (0,35), (4,8),(1,4)}, {(0, 0),(0,14),(4,33)}, {(0,0),(3,3), (0,19),(1,14)}, {(0,0), (2,22), (2,11),(2,26)}, {(0,0), (3,17), (3,1)}, {(0,0),(0,10),(4,14),(2,5)}, {(0,0), (1,16),(2,27), (0,29) }, {(0, 0),(3,32),(4,17)}, {(0,0), (1,26),(4,34),(0,13)}, {(0,0),(2,7),(1,35),(3,16)}, {(0,0),(4,29), (2,15)}

{(0,0),(3,54), (3,52), (1,65)}, {(0,0), (2,58),(2,31), (1,28)}, {(0,0),(2,3),(0,71)}, {(0,0),(2,47),(3,56), (4,21)}, {(0,0),(2,21),(1, 55),(2,29)}, {(0,0),(0,25),(2,30)}, {(0,0),(1,16),(1,27), (2,33)}, {(0,0),(2,17),(4,1),(4,11)}, {(0,0), (0,40),(2,23)}, {(0,0),(2,22),(4,13),(3,65) }, {(0,0),(3,18),(4,47),(3,2) }, {(0,0), (3,1),(0,38)}, {(0,0),(3,53),(4,25), (1,15) }, {(0,0),(2,42),(4,10),(3,47) }, {(0,0),(1,7), (4,6)}, {(0,0),(0,31),(1,52), (1,57)}, {(0,0), (2,10), (1,18),(3,20)}, {(0,0), (2,11), (2,39)}, {(0,0),(1,39),(0,26), (0,69)}, {(0,0), (3,19), (3, 40),(4,41)}, {(0,0), (1,14),(1,8)}, {(0,0),(3,8),(4,31), (2,69)}, {(0,0),(4,19),(4,38), (1,33)}, {(0,0),(3,31), (0,4)}, {(0,0), (2,35), (0,58),(1,40)}, {(0,0), (4,14), (0,63), (2,6)}, {(0,0),(0,15), (0,52)}, {(0,0), (1,4),(0,7),(1,63)}, {(0,0),(2,28),(0, 49),(1,68)}, {(0,0),(0,39),(0,17)}, {(0,0),(1,2), (3,15), (3,45)}, {(0,0), (3,4),(3,22),(1,50)}, {(0,0),(3,63),(2, 65)}

{(0,0), (4,34),(0,83), (4,61)}, {(0,0),(4,23), (2,25), (0,78)}, {(0,0),(2,46),(4,1)}, {(0,0),(2,27),(0,73),(1,42)}, {(0,0),(1,21), (2,30), (2,88)}, {(0,0),(3,83), (3,36)}, {(0,0),(3,72),(0,37),(1,63)}, {(0,0),(4,39),(4,73), (1,83)}, {(0, 0),(3,68), (4,8)}, {(0,0),(3,33),(1,75),(0,67)}, {(0,0),(2,37),(4,3), (1,18)}, {(0,0),(1,6), (4,46)}, {(0,0),(1,86),(4,57),(2,68)}, {(0,0),(4,44),(3,93),(2,66)}, {(0,0),(4,22),(0,36)}, {(0,0),(4,14),(1,90),(1,84)}, {(0,0),(2,52),(3,77),(2,53)}, {(0,0),(1,71),(2,18)}, {(0,0),(4,19),(1,30),(1,4)}, {(0,0),(2,57),(2,82), (2,36)}, {(0,0),(0,10),(2,87)}, {(0,0),(0,20),(1,66), (2,55)}, {(0,0),(3,88),(2,86), (2,20)}, {(0,0),(1,1), (0,5)}, {(0,0),(1,76), (2,31),(3,29)}, {(0,0),(3,27),(0,74),(3,51)}, {(0,0),(2,26),(2,91)}, {(0,0),(4,79),(4,93),(4,81)}, {(0,0),(2,2),(4,86), (1,7)}, {(0,0),(4,24), (2,41)}, {(0,0),(0,40),(0,7),(0,92)}, {(0,0),(0,39),(2,14),(4,26)}, {(0,0),(3,7),(0,28)}, {(0,0),(0,15),(2,22),(1,60)}, {(0,0),(3,58),(1,61),(2,5)}, {(0,0),(3,38),(0,17)}, {(0,0),(0,35),(0,54),(4,42)}, {(0,0),(3,13),(0,53),(3,54)}, {(0,0),(4,37),(1,38)}, {(0,0), (4,9),(2,72), (3,4)}, {(0,0),(3,18),(4,59),(4,62)}, {(0,0),(0,9),(4,76)}

{(0,0),(1,13),(4,8), (2,43)}, {(0,0),(1,83),(1,17),(1,57)}, {(0,0),(2,102),(0,19)}, {(0,0),(3,50),(1,58),(1,63)}, {(0,0),(3,33),(3,83),(4,10)}, {(0,0),(4,33),(3,46)}, {(0,0),(2,16),(4,28),(2,55)}, {(0,0),(2,27),(0,3), (1,29)}, {(0,0),(4,104),(3,34)}, {(0,0),(0,15),(1,96),(1,84)}, {(0,0),(1,8),(0,34), (3,76)}, {(0,0), (3,70),(0,33)}, {(0,0),(4,59),(1,2),(4,30)}, {(0,0), (1,6),(4,9),(1,37)}, {(0,0),(4,99), (1,22)}, {(0,0),(2,77), (2,61),(4,83)}, {(0,0),(3,32),(4,60),(4,47)}, {(0,0),(0,2), (2,44)}, {(0,0),(2,52),(2,30),(0,53)}, {(0,0),(4,49), (2,34),(4,22)}, {(0,0),(1,66),(0,63)}, {(0,0),(0,62), (1,45),(4,52)}, {(0,0),(3,100),(0,84),(0,98)}, {(0,0),(2,19), (4,107)}, {(0,0),(2,11),(3,52),(3,51)}, {(0,0),(2,21),(1,50), (3,41)}, {(0,0),(2, 64),(2,53)}, {(0,0),(3,63),(0,102),(1,87)}, {(0,0),(4,34),(0,99),(0,23)}, {(0,0),(2,17),(1,33)}, {(0,0),(0,37), (4,85),(3,104)}, {(0,0),(1,21),(2,97),(0,28)}, {(0,0),(4,81),(3,26)}, {(0,0),(4,89),(0,100),(0,52)}, {(0,0),(4,14),(3,88),(1,103)}, {(0,0),(2,7), (0,101)}, {(0,0),(4,1),(2,63),(1,24)}, {(0,0),(3,10),(4,56),(1,7)}, {(0,0),(4,66), (3,61)}, {(0,0),(0,70),(3,5),(3,22)}, {(0,0),(2,29),(2,49),(0,87)}, {(0,0),(0,57),(4,77)}, {(0,0),(4,4), (3,68),(0,47)}, {(0,0),(0,35),(1,102),(4,92)}, {(0,0),(2,2),(3,14)}, {(0,0),(2,79), (2,35),(0,83)}, {(0,0),(0,30),(4,61),(1,62)}, {(0,0),(4,94),(0,59)}

{(0,0),(4,47), (0,98),(2,149) }, {(0,0),(1,16),(3,103), (1,123)}, {(0,0),(0,90),(0,38)}, {(0,0),(1,49),(1,154),(3,105)}, {(0,0),(1,36),(4,38),(4,71)}, {(0,0),(3,126),(0,2)}, {(0,0),(4,64),(4,28), (2,111)}, {(0,0),(2,105),(3,109),(2,154)}, {(0,0), (4,44),(2,66)}, {(0,0),(4,59),(4,105),(4,91) }, {(0,0),(0,100),(0,24),(3,15)}, {(0,0),(0,95),(1,59)}, {(0,0),(1,79), (0,153),(1,122)}, {(0,0), (1,114),(1,17),(0,134)}, {(0,0),(3,34),(0,84)}, {(0,0),(4,32),(3,37),(3,85)}, {(0,0),(4,139),(1,159),(3,79)}, {(0,0),(2,107),(2,8)}, {(0,0),(1,44),(3,40), (0,112)}, {(0,0),(1,84),(0,118),(4,127)}, {(0,0),(3,56),(1,68)}, {(0,0),(2,37),(3,14),(1,158)}, {(0,0),(2,67),(1,104), (3,32) }, {(0,0),(3,28),(2,94) }, {(0,0),(3,59),(2,29),(3,130) }, {(0,0),(1,86),(3,151),(1,7)}, {(0,0),(4,24),(3,131)}, {(0,0),(0,150),(2,30),(0,147)}, {(0,0),(3,11),(1,32),(4,161)}, {(0,0),(0,30),(2,114)}, {(0,0),(3,29),(4,13),(0,34)}, {(0,0),(0,1),(3,137),(3,115)}, {(0,0),(2,157),(0,89)}, {(0,0),(1,76),(4,60),(2,61)}, {(0,0),(3,91),(1,72),(1,133)}, {(0,0),(4,114),(0,93)}, {(0,0),(3,53),(4,95),(3,45)}, {(0,0),(0,13),(4,101), (2,159)}, {(0,0),(2,80),(3,149)}, {(0,0),(2,152),(2,96),(3,127)}, {(0,0),(1,99),(4,140),(0,17)}, {(0,0),(0,75),(4,142)}, {(0,0),(3,73),(1,9),(4,55)}, {(0,0),(4,65),(4,85),(3,67)}, {(0,0),(1,89),(3,147)}, {(0,0),(3,86),(2,143),(0,42)}, {(0,0),(0,123),(0,41),(0,94)}, {(0,0),(1,56),(1,25)}, {(0,0),(2,132),(2,73),(4,136)}, {(0,0),(1,62),(2,6),(4,98)}, {(0,0),(4,122),(4,75)}, {(0,0),(4,99),(3,9),(1,47)}, {(0,0),(3,33),(3,26),(1,5)}, {(0,0),(2,12),(2,97)}, {(0,0),(4,49),(3,63),(4,109)}, {(0,0),(2,7),(4,62),(1,132)}, {(0,0),(0,88),(4,50)}, {(0,0),(3,23),(2,100),(0,66)}, {(0,0),(1,119),(0,104),(1,8)}, {(0,0),(1,161), (0,6)}, {(0,0),(0,10),(4,143),(0,137)}, {(0,0),(4,104),(1,28),(1,73)}, {(0,0),(3,113),(2,123)}, {(0,0),(2,112),(1,34),(4,41)}, {(0,0),(0,5),(1,116),(2,74)}, {(0,0),(3,123),(2,156)}