Research Article
Classification and Interpretability of Mild Cognitive Impairment Based on Resting-State Functional Magnetic Resonance and Ensemble Learning
Table 3
Classification performance of XGBoost classifier.
| ā | Accuracy (%) | AUC | Recall (%) | Precision (%) | F1-score | Kappa |
| DC | 62.78 | 0.6558 | 40.00 | 60.00 | 0.4538 | 0.1803 | fALFF | 61.94 | 0.6608 | 53.33 | 58.33 | 0.5285 | 0.2086 | mPerAF | 65.14 | 0.6333 | 40.00 | 54.00 | 0.4243 | 0.2077 | PerAF | 57.78 | 0.5867 | 34.17 | 46.67 | 0.3802 | 0.0742 | Wavelet-ALFF | 63.33 | 0.6142 | 48.33 | 55.83 | 0.4833 | 0.2191 |
|
|