Research Article

A Smoothed Matrix Multivariate Elliptical Distribution-Based Projection Method for Feature Extraction

Algorithm 2

SMEDP.
Input: a dataset of n training image matrices{Xic}∈Rm×n, m = p×q, and an image matrix Y ∈ Rp×q
(1)Use Algorithm 1 to calculate the weight vector αi for each Xi.
(2)Apply PCA to reduce the dimensions of X = [Vec(X11), Vec(X21), …, Vec(Xn11), Vec(X12), Vec(X22), …, Vec(Xn22), …, Vec(X1C), Vec(X2C), …, Vec(XnCC)] and denote WPCA as the PCA-transformation matrix.
(3)Compute the local scatter matrix XαβXT and the total scatter matrix (X−) (X−)T in the PCA subspace.
(4)Calculate the P = [p1, p2, …, pd] of corresponding to the first d largest eigenvalues.
Output: the optimal projection matrix P and the final projection matrix W=PTWTPCA