Research Article
A Smoothed Matrix Multivariate Elliptical Distribution-Based Projection Method for Feature Extraction
Table 2
Recognition rates (%) and versus subspace dimension of different methods on CMU PIE with l = 7, 9.
| Methods | l = 7 | l = 9 | d = 30 | 60 | 90 | 120 | 150 | d = 30 | 60 | 90 | 120 | 150 |
| PCA | 0.2180 | 0.2647 | 0.2673 | 0.2829 | 0.2846 | 0.3127 | 0.3755 | 0.4137 | 0.4275 | 0.4324 | LPP | 0.2266 | 0.2604 | 0.2768 | 0.2785 | 0.2898 | 0.2971 | 0.3912 | 0.4265 | 0.4422 | 0.4637 | SPP | 0.1254 | 0.1877 | 0.2569 | 0.3365 | 0.3538 | 0.3618 | 0.5078 | 0.6559 | 0.7539 | 0.8265 | CRP | 0.2820 | 0.3867 | 0.4602 | 0.5398 | 0.6151 | 0.4598 | 0.6013 | 0.7127 | 0.7745 | 0.8216 | NMRP | 0.2197 | 0.3175 | 0.4394 | 0.5311 | 0.6073 | 0.4598 | 0.6078 | 0.7363 | 0.8020 | 0.8510 | SMEDP | 0.2967 | 0.3824 | 0.4810 | 0.5631 | 0.6324 | 0.4759 | 0.6294 | 0.7369 | 0.8122 | 0.8571 |
|
|