Research Article
A Smoothed Matrix Multivariate Elliptical Distribution-Based Projection Method for Feature Extraction
Table 3
Recognition rate (%) and versus subspace dimension of different methods on CMU PIE with l = 11, 13.
| Methods | l = 11 | l = 13 | d = 30 | 60 | 90 | 120 | 150 | d = 30 | 60 | 90 | 120 | 150 |
| PCA | 0.3127 | 0.3755 | 0.4138 | 0.4275 | 0.4326 | 0.4920 | 0.4973 | 0.5321 | 0.5348 | 0.5321 | LPP | 0.2971 | 0.3912 | 0.4265 | 0.4422 | 0.4637 | 0.4612 | 0.5749 | 0.6150 | 0.6056 | 0.6310 | SPP | 0.3618 | 0.5078 | 0.6559 | 0.7529 | 0.8265 | 0.6484 | 0.8396 | 0.8997 | 0.9559 | 0.9679 | CRP | 0.5098 | 0.6333 | 0.7127 | 0.7745 | 0.8216 | 0.7233 | 0.8670 | 0.9225 | 0.9372 | 0.9599 | NMRP | 0.4598 | 0.6078 | 0.7363 | 0.8020 | 0.8510 | 0.7219 | 0.8610 | 0.9345 | 0.9679 | 0.9733 | SMEDP | 0.4059 | 0.5794 | 0.7069 | 0.8022 | 0.8571 | 0.7286 | 0.8636 | 0.9305 | 0.9626 | 0.9779 |
|
|