Research Article
Detecting High-Risk Factors and Early Diagnosis of Diabetes Using Machine Learning Methods
| S. No. | Ref. | Dataset | Preprocessing method(s) | Outperformed method(s) | Model accuracy (%) |
| 1 | [8] | Private | PCA, mRMR | RF | 80.84 | PIDD | 77.21 | 2 | [13] | PIDD | PCA | SVM, AB, bootstrap | 94.44 | 3 | [4] | BRFSS-2014 | SMOTE | NN | 82.41 | 4 | [14] | BRFSS | Different parameters used | RF | 86.80 | 5 | [15] | — | — | LR | 77.9 | 6 | [16] | PIDD | Feature selection | NN | 86.6 | 7 | [9] | PIDD | Label encoding, normalization | SVM | 80.26 | Other | DT, RF | 96.81 | 8 | [17] | PIDD | Features extraction | RF | 88.31 | 9 | [2] | Private | — | LR | 96.02 | 10 | [18] | Private | — | Bagging | 97.7 |
|
|