Research Article

Machine Learning Application of Transcranial Motor-Evoked Potential to Predict Positive Functional Outcomes of Patients

Table 2

Prediction performance of the models with 70 : 30 training samples and test samples ratio as the ability to identify the positive outcome.

All featuresTarget and reference p2p amplitude and onset latencyTarget and reference p2p amplitude, onset latency, and AUC

>200% method>50% methodFine KNNWeighted KNNEnsemble Subspace KNNFine KNNWeighted KNNEnsemble Bagged TreesEnsemble Subspace KNNFine KNNWeighted KNNEnsemble Bagged TreesEnsemble Subspace KNN
True positive25.00%83.33%100.00%100.00%100.00%100.00%100.00%100.00%100.00%100.00%100.00%100.00%91.67%
True negative75.00%75.00%0.00%0.00%0.00%0.00%0.00%0.00%0.00%0.00%0.00%0.00%0.00%
False positive25.00%25.00%100.00%100.00%100.00%100.00%100.00%100.00%100.00%100.00%100.00%100.00%100.00%
False negative75.00%16.67%0.00%0.00%0.00%0.00%0.00%0.00%0.00%0.00%0.00%0.00%8.33%