Research Article
Feature Selection and Dwarf Mongoose Optimization Enabled Deep Learning for Heart Disease Detection
| | Variations | Metrics | BF-PSO | Bi-LSTM-CRF | XGBoost | RLNNC | DMOA-SqueezeNet(without feature selection) | Proposed DMOA-SqueezeNet |
| | Cleveland dataset | | Training data | Accuracy | 0.900 | 0.906 | 0.911 | 0.918 | 0.919 | 0.925 | | Sensitivity | 0.835 | 0.857 | 0.883 | 0.908 | 0.912 | 0.926 | | Specificity | 0.879 | 0.891 | 0.902 | 0.917 | 0.915 | 0.918 | | K value | Accuracy | 0.907 | 0.911 | 0.915 | 0.918 | 0.919 | 0.922 | | Sensitivity | 0.896 | 0.905 | 0.905 | 0.912 | 0.915 | 0.918 | | Specificity | 0.853 | 0.865 | 0.876 | 0.890 | 0.898 | 0.909 |
| | Z-Alizadeh Sani dataset | | Training data | Accuracy | 0.886 | 0.892 | 0.897 | 0.903 | 0.904 | 0.911 | | Sensitivity | 0.827 | 0.848 | 0.874 | 0.899 | 0.902 | 0.917 | | Specificity | 0.870 | 0.882 | 0.893 | 0.907 | 0.907 | 0.908 | | K value | Accuracy | 0.887 | 0.890 | 0.894 | 0.897 | 0.898 | 0.902 | | Sensitivity | 0.885 | 0.894 | 0.894 | 0.901 | 0.903 | 0.907 | | Specificity | 0.846 | 0.859 | 0.869 | 0.884 | 0.891 | 0.903 |
|
|