Research Article
[Retracted] An Efficient Stacked Deep Transfer Learning Model for Automated Diagnosis of Lyme Disease
Table 2
Training analyses among the proposed and competitive Lyme rash classification models.
| Model | TP | FP | TN | FN | Accuracy | f-measure | Sensitivity | Specificity | AUC |
| CNN [10] | 196 | 20 | 294 | 26 | 90.4306 | 91.5032 | 87.9069 | 93.3333 | 91.0679 | EDLP [9] | 192 | 24 | 303 | 17 | 89.6551 | 94.3708 | 92.4444 | 92.2330 | 92.3221 | SqueezeNet [11] | 194 | 22 | 294 | 26 | 89.3719 | 92.1921 | 87.6777 | 93.3130 | 91.1111 | LWADL [12] | 210 | 6 | 295 | 25 | 97.0731 | 92.4471 | 88.8392 | 98.0769 | 94.2164 | Unet-dCNN [13] | 184 | 32 | 297 | 23 | 86.0262 | 92.6282 | 89.5454 | 90.0311 | 89.8336 | ResNet-50 [15] | 202 | 14 | 288 | 32 | 93.1372 | 89.8089 | 85.5855 | 95.2702 | 91.1196 | FADEM [16] | 195 | 21 | 292 | 28 | 90.1408 | 91.3580 | 87.2727 | 93.3753 | 90.8752 | Ensemble CNN [17] | 195 | 21 | 310 | 10 | 90.7894 | 96.633 | 95.3917 | 93.1818 | 94.0952 | Proposed without EBCC | 197 | 19 | 316 | 4 | 90.5940 | 98.6486 | 97.8609 | 93.8906 | 95.3815 | Proposed with EBCC | 213 | 3 | 316 | 4 | 98.6111 | 98.6711 | 98.1566 | 99.0000 | 98.6460 |
|
|