Research Article

[Retracted] An Efficient Stacked Deep Transfer Learning Model for Automated Diagnosis of Lyme Disease

Table 2

Training analyses among the proposed and competitive Lyme rash classification models.

ModelTPFPTNFNAccuracyf-measureSensitivitySpecificityAUC

CNN [10]196202942690.430691.503287.906993.333391.0679
EDLP [9]192243031789.655194.370892.444492.233092.3221
SqueezeNet [11]194222942689.371992.192187.677793.313091.1111
LWADL [12]21062952597.073192.447188.839298.076994.2164
Unet-dCNN [13]184322972386.026292.628289.545490.031189.8336
ResNet-50 [15]202142883293.137289.808985.585595.270291.1196
FADEM [16]195212922890.140891.358087.272793.375390.8752
Ensemble CNN [17]195213101090.789496.63395.391793.181894.0952
Proposed without EBCC19719316490.594098.648697.860993.890695.3815
Proposed with EBCC2133316498.611198.671198.156699.000098.6460