Research Article

Design and Purchase Intention Analysis of Cultural and Creative Goods Based on Deep Learning Neural Networks

Table 3

rDNN model training process.

Model.compile (loss = “mean_squared_error,” optimizer = “sgd,” metrics = [“accuracy”]
Early_stopping = EarlyStopping (monitor = “val_loss,” patience = 50)
History = model.fit (data, label, batch_size = 100, nb_epoch = 200, shuffle = True, callbacks = [early_stopping])