Research Article
An Assessment of Lexical, Network, and Content-Based Features for Detecting Malicious URLs Using Machine Learning and Deep Learning Models
Table 4
Parameters’ settings applied for all classifiers.
| Model | Parameter | Value |
| RF | Number of trees | 100 |
| CNN | Activation function in hidden layers | ReLU | Number of neurons in output layer | 1 | Activation function in output layer | Sigmoid | Dropout | 0.2, 0.5 | Batch size | 32 | Number of layers | 4 | Number of neurons in hidden layers | 32, 64, 64 |
| LSTM | Activation function in hidden layers | Tanh | Number of neurons in output layer | 1 | Activation function in output layer | Sigmoid | Dropout | 0.1 | Batch size | 32 | Number of layers | 3 | Number of neurons in hidden layers | 8, 8 | |
|
|