Research Article
Determination of Wheat Heading Stage Using Convolutional Neural Networks on Multispectral UAV Imaging Data
Table 2
Fitting effect of traditional VI and heading rate.
| | Index | Method | Fitting result | | R2 | RMSE |
| | DI | NN | 0.23 | 0.15 | | SVM | 0.40 | 0.20 | | DT | 0.55 | 0.31 | | 1D CNN + DT | 0.57 | 0.31 |
| | DVI | NN | 0.26 | 0.16 | | SVM | 0.28 | 0.17 | | DT | 0.63 | 0.35 | | 1D CNN + DT | 0.70 | 0.36 |
| | NDVI | NN | 0.27 | 0.17 | | SVM | 0.44 | 0.22 | | DT | 0.64 | 0.39 | | 1D CNN + DT | 0.66 | 0.39 |
| | CIrededge | NN | 0.23 | 0.15 | | SVM | 0.76 | 0.32 | | DT | 0.72 | 0.36 | | 1D CNN + DT | 0.74 | 0.37 |
| | GNDVI | NN | 0.27 | 0.17 | | SVM | 0.42 | 0.21 | | DT | 0.60 | 0.36 | | 1D CNN + DT | 0.62 | 0.36 |
| | TVI | NN | 0.13 | 0.31 | | SVM | 0.78 | 0.29 | | DT | 0.85 | 0.41 | | 1D CNN + DT | 0.87 | 0.42 |
|
|