Research Article
Determination of Wheat Heading Stage Using Convolutional Neural Networks on Multispectral UAV Imaging Data
Table 3
Fitting effect of each band combination input fitting model.
| Input band (nm) | Fitting model | Fitting results | R2 | RMSEP |
| 550 + 660 + 730 + 790 nm | NN | 0.77 | 0.24 | SVR | 0.78 | 0.29 | DT | 0.83 | 0.25 | 1D CNN + DT | 0.95 | 0.24 |
| 550 + 660 + 730 nm | NN | 0.14 | 0.12 | SVR | 0.58 | 0.25 | DT | 0.76 | 0.24 | 1D CNN + DT | 0.82 | 0.24 |
| 550 + 660 + 790 nm | NN | 0.12 | 0.48 | SVR | 0.68 | 0.27 | DT | 0.74 | 0.23 | 1D CNN + DT | 0.92 | 0.29 |
| 550 + 730 + 790 nm | NN | 0.11 | 0.58 | SVR | 0.69 | 0.27 | DT | 0.70 | 0.26 | 1D CNN + DT | 0.92 | 0.28 |
| 660 + 730 + 790 nm | NN | 0.11 | 0.43 | SVR | 0.68 | 0.37 | DT | 0.74 | 0.36 | 1D CNN + DT | 0.76 | 0.42 |
|
|