Research Article

Determination of Wheat Heading Stage Using Convolutional Neural Networks on Multispectral UAV Imaging Data

Table 4

Comparison of the accuracy of FHB preventive control time based on different monitoring models.

Monitoring modelInput bandAccuracy (%)

1D CNN + DT550 + 660 + 730 + 790 nm97.50
550 + 660 + 730 nm93.06
550 + 660 + 790 nm91.53
550 + 730 + 790 nm88.47
660 + 730 + 790 nm86.53
DI87.92
DVI91.39
NDVI89.72
CIrededge87.36
GNDVI87.36%
TVI89.36

NN550 + 660 + 730 + 790 nm67.22
550 + 660 + 730 nm67.22
550 + 660 + 790 nm67.22
550 + 730 + 790 nm63.75
660 + 730 + 790 nm56.94
DI56.94
DVI56.82
NDVI56.94
CIrededge59.17
GNDVI57.64
TVI63.33

SVM550 + 660 + 730 + 790 nm95.00
DI60.00
550 + 660 + 730 nm83.06
550 + 660 + 790 nm89.31
550 + 730 + 790 nm88.19
660 + 730 + 790 nm82.44
DVI71.81
NDVI72.22
CIrededge71.81
GNDVI60.97
TVI76.81

DT550 + 660 + 730 + 790 nm91.94
DI86.94
550 + 660 + 730 nm92.64
550 + 660 + 790 nm91.94
550 + 730 + 790 nm92.08
660 + 730 + 790 nm91.22
DVI89.17
NDVI88.33
CIrededge85.28
GNDVI89.17
TVI87.92