Research Article
Determination of Wheat Heading Stage Using Convolutional Neural Networks on Multispectral UAV Imaging Data
Table 4
Comparison of the accuracy of FHB preventive control time based on different monitoring models.
| Monitoring model | Input band | Accuracy (%) |
| 1D CNN + DT | 550 + 660 + 730 + 790 nm | 97.50 | 550 + 660 + 730 nm | 93.06 | 550 + 660 + 790 nm | 91.53 | 550 + 730 + 790 nm | 88.47 | 660 + 730 + 790 nm | 86.53 | DI | 87.92 | DVI | 91.39 | NDVI | 89.72 | CIrededge | 87.36 | GNDVI | 87.36% | TVI | 89.36 |
| NN | 550 + 660 + 730 + 790 nm | 67.22 | 550 + 660 + 730 nm | 67.22 | 550 + 660 + 790 nm | 67.22 | 550 + 730 + 790 nm | 63.75 | 660 + 730 + 790 nm | 56.94 | DI | 56.94 | DVI | 56.82 | NDVI | 56.94 | CIrededge | 59.17 | GNDVI | 57.64 | TVI | 63.33 |
| SVM | 550 + 660 + 730 + 790 nm | 95.00 | DI | 60.00 | 550 + 660 + 730 nm | 83.06 | 550 + 660 + 790 nm | 89.31 | 550 + 730 + 790 nm | 88.19 | 660 + 730 + 790 nm | 82.44 | DVI | 71.81 | NDVI | 72.22 | CIrededge | 71.81 | GNDVI | 60.97 | TVI | 76.81 |
| DT | 550 + 660 + 730 + 790 nm | 91.94 | DI | 86.94 | 550 + 660 + 730 nm | 92.64 | 550 + 660 + 790 nm | 91.94 | 550 + 730 + 790 nm | 92.08 | 660 + 730 + 790 nm | 91.22 | DVI | 89.17 | NDVI | 88.33 | CIrededge | 85.28 | GNDVI | 89.17 | TVI | 87.92 |
|
|