Research Article

A Novel Approach for Feature Selection and Classification of Diabetes Mellitus: Machine Learning Methods

Table 1

Hyperparameter optimization.

K-nearest neighbourRandom forestDecision treesMultilayer perceptron

Number of neighbours = 45Size of each bag = 53Confidence factor = 0.11Learning rate = 0.003
Batch size = 100Max depth = 0Min num. of objects = 1Momentum = 0.9
Algorithm = linear searchNo. of trees = 100Unpruned = falseHidden layers = 10
Distance function = Manhattan function