Research Article

Diagnosis of Chronic Ischemic Heart Disease Using Machine Learning Techniques

Table 3

Dataset attribute, icon, detail, and range.

Sr. no.AttributeRepresentative iconDetailsRange

1AgeAgePatients age, in years29–71
2SexSex0 = female; 1 = male0,1
3Chest painCp4 types of chest pain (1—typical angina; 2—atypical angina; 3—nonanginal pain; 4—asymptomatic)0,1,2,3
4Rest blood pressureTrestbpsResting systolic blood pressure (in mm Hg on admission to the hospital)94–200
5Serum cholesterolCholSerum cholesterol in mg/dl126–564
6Fasting blood sugarFbsFasting blood sugar >120 mg/dl (0—false; 1—true)0,1
7Rest electrocardiographRestecg0—normal; 1—having ST-T wave abnormality; 2—left ventricular hypertrophy0,1,2
8MaxHeart rateThalchMaximum heart rate achieved71–202
9Exercise-induced anginaExangExercise-induced angina (0—no; 1—yes)0,1
10ST depressionOldpeakST depression induced by exercise relative to rest0–6.2
11SlopeSlopeSlope of the peak exercise ST segment (1—upsloping; 2—flat; 3—down sloping)1,2,3,
12No. of vesselsCaNo. of major vessels (0–3) colored by fluoroscopy0,1,2,3
13ThalassemiaThalDefect types; 3—normal; 6—fixed defect; 7—reversible defect0,1,2,3
14Num (class attribute)ClassDiagnosis of heart disease status (0—nil risk; 1—low risk; 2—potential risk; 3—high risk; 4—very high risk)0,1