Research Article

Developing an Intelligent System with Deep Learning Algorithms for Sentiment Analysis of E-Commerce Product Reviews

Algorithm 1

CNN-LSTM.
Step 1: input training set as x_train, targets as y_train
Step 2: assign the hyperparameters as embedding_dimension = 50, number_filters = 64, vocabulary_size = 15000 words, input_length = 400, dropout_rate = 0.4, strides = 5, activation_function = Relu, kernel_size = 3  3, pool_size = 5  , lstm_units = 50, batch_size = 32, number_epochs = 5, num_classes = 2, optimizer = (Adam).
Step 3: initialize sequential model ()
Step 4: set embedding layer as input layer
Model = model.add(embedding(embedding_dimension, vocabulary_size, input_length))
Step 5: add convolutional layer
Model = model.add(convolution 1D(number_filters, kernel_size))
Step 6: add max pooling layer
Model = model.add(max_pool layer(pool_size, strides))
Step 7: add LSTM layer
Model = model.add(LSTM_layer(lstm_units, activation_function, recurrent_activation, dropout_rate, return_sequences))
Step 8: add dropout layer
Model-model.add(Dropout(dropout_rate))
Step 9: add dense layer
Model = model.add(Dense_layer(num_classes, activation_function = “sigmoid”))
Step 10: compilation
model.compile(e (loss_function, optimizer)
model.fit (y_train, y_train, number_epochs, batch_size)