Research Article

BA-GCA Net: Boundary-Aware Grid Contextual Attention Net in Osteosarcoma MRI Image Segmentation

Table 3

Performance of models.

ModelPreRecF1DSCIOU#paramsFLOPs

FCN-16s [21]0.9220.8820.9000.8590.824134.3 M190.35 G
FCN-8s [21]0.8920.9140.9020.8750.831134.3 M190.08 G
MSFCN [24]0.8810.9360.9060.8740.84123.38 M1524.34 G
MSRN [25]0.8930.9450.9180.8870.85314.27 M1461.23 G
FPN [46]0.9140.9240.9190.8880.85248.20 M141.45 G
U-Net [22]0.9220.9240.9230.8920.86717.26 M160.16 G
OCR [41]0.8970.9080.9010.8910.82727.35 M125.67 G
DeepLabV3 [4]0.9260.9250.9250.9090.87039.63 M170.45 G
UNet++ [59]0.9240.9240.9240.9080.86818.16 M165.23 G
SVM [60]0.7560.7640.7600.7340.702
DRN [50]0.9160.9220.9170.9090.84317.66 M76.93 G
DRN + CA [42]0.9180.9230.9190.9100.85118.06 M77.21 G
Ours (DRN + GCA)0.9270.9240.9250.9130.86618.11 M77.34 G
Ours (DRN + GCA + STLB)0.9250.9340.9290.9160.87318.47 M82.67 G
Ours (DRN + GCA + STLB + STB)0.9380.9370.9370.9270.88019.88 M149.70 G