Research Article
Improvement of K-Means Algorithm and Its Application in Air Passenger Grouping
Table 3
Clustering results of k-means
and k-means2o on real-world datasets.
| Dataset | ACC | ARI | NMI | FMI | k- | k-2o | k- | k-2o | k- | k-2o | k- | k-2o |
| Breast-cancer | 0.8541 | 0.8910 | 0.4914 | 0.6062 | 0.4647 | 0.5276 | 0.7915 | 0.8286 | Banknote | 0.6122 | 0.5954 | 0.0485 | 0.0356 | 0.0303 | 0.0239 | 0.5517 | 0.5231 | Bupa | 0.8550 | 0.5768 | 0.0000 | 0.0058 | 0.0000 | 0.0112 | 0.6192 | 0.5136 | Compound | 0.6566 | 0.6365 | 0.5378 | 0.5043 | 0.7191 | 0.6557 | 0.6422 | 0.6181 | Ct | 0.8235 | 0.8325 | 0.4160 | 0.4399 | 0.3296 | 0.3485 | 0.7078 | 0.7199 | Hayes–Roth | 0.4393 | 0.4469 | 0.0202 | 0.0226 | 0.0287 | 0.0317 | 0.3501 | 0.3519 | Iris | 0.8933 | 0.8933 | 0.7302 | 0.7302 | 0.7581 | 0.7581 | 0.8208 | 0.8208 | Libras | 0.4277 | 0.4416 | 0.3199 | 0.2760 | 0.6066 | 0.5716 | 0.3734 | 0.3389 | Parkinsons | 0.7230 | 0.6307 | 0.0000 | 0.0625 | 0.0000 | 0.0493 | 0.7444 | 0.5889 | Penbased | 0.7674 | 0.6035 | 0.5992 | 0.4907 | 0.6927 | 0.6723 | 0.6412 | 0.5582 | Vowel | 0.3636 | 0.3645 | 0.2028 | 0.2204 | 0.4141 | 0.4337 | 0.2789 | 0.2868 | Waveform21 | 0.5016 | 0.5018 | 0.2536 | 0.2547 | 0.3622 | 0.3654 | 0.5039 | 0.5047 | Waveform40 | 0.5146 | 0.5160 | 0.2516 | 0.2530 | 0.5023 | 0.5035 | 0.3605 | 0.3632 | Wdbc | 0.8541 | 0.8910 | 0.4914 | 0.6062 | 0.4647 | 0.5276 | 0.7915 | 0.8286 | Wine | 0.7022 | 0.7022 | 0.3711 | 0.3675 | 0.4287 | 0.4164 | 0.5835 | 0.5809 | Maximum | 7 | 10 | 6 | 10 | 6 | 10 | 8 | 8 |
|
|
The best clustering performance evaluation values are shown in bold.
|