Research Article
Network Construction for Bearing Fault Diagnosis Based on Double Attention Mechanism
Table 2
Structural parameters of this model.
| Layers | Network name | Key parameter | Output size |
| 0 | Input layer | — | 1024 1 | 1 | Convolutional block1 | Number of neurons: 512, convolution kernel | 512 1 | 2 | Convolutional block12 | Number of neurons: 128, convolution kernel | 128 1 | 3 | Spatial feature attention layer | — | 128 1 | 4 | LSTM1 | Number of neurons: 32, dropout: 0.3 | 32 1 | 5 | LSTM2 | Number of neurons: 32, dropout: 0.3 | 32 1 | 6 | LSTM3 | Number of neurons: 32, dropout: 0.3 | 32 1 | 7 | LSTM4 | Number of neurons: 32, dropout: 0.3 | 32 1 | 8 | Temporal feature attention layer | — | 32 1 | 9 | Softmax layer | — | 10 1 |
|
|