Research Article

Network Construction for Bearing Fault Diagnosis Based on Double Attention Mechanism

Table 2

Structural parameters of this model.

LayersNetwork nameKey parameterOutput size

0Input layer1024  1
1Convolutional block1Number of neurons: 512, convolution kernel 512  1
2Convolutional block12Number of neurons: 128, convolution kernel 128  1
3Spatial feature attention layer128  1
4LSTM1Number of neurons: 32, dropout: 0.332 1
5LSTM2Number of neurons: 32, dropout: 0.332  1
6LSTM3Number of neurons: 32, dropout: 0.332  1
7LSTM4Number of neurons: 32, dropout: 0.332  1
8Temporal feature attention layer32  1
9Softmax layer10  1