Research Article
A Novel U-Net Based Deep Learning Method for 3D Cardiovascular MRI Segmentation
Table 1
Our 3D convolutional model.
| Input image | Output | Layer (type) | Stride | Kernel | Parameters |
| 64 | 64 | 64 | 1 | 32 | 32 | 32 | 16 | Conv_1 (convolution) | 2 | 3 | 448 | 32 | 32 | 32 | 16 | 16 | 16 | 16 | 16 | Conv_2 (convolution) | 2 | 3 | 6928 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | Spatial attention | 2 | 1 | 816 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 100 | Sparse Block_1 (sparse block) | 1 | 3 | 43300 | 16 | 16 | 16 | 100 | 16 | 16 | 16 | 100 | Conv_3 (convolution) | 1 | 1 | 10100 | 16 | 16 | 16 | 100 | 16 | 16 | 16 | 184 | Sparse Block_2 (sparse block) | 1 | 3 | 496984 | 16 | 16 | 16 | 184 | 16 | 16 | 16 | 64 | Conv_4 (convolution) | 1 | 1 | 11840 | 16 | 16 | 16 | 64 | 32 | 32 | 32 | 64 | Deconv_1 (deconvolution) | 2 | 4 | 262208 | 32 | 32 | 32 | 64 | 64 | 64 | 64 | 64 | Deconv_2 (deconvolution) | 2 | 4 | 262208 | 16 | 16 | 16 | 100 | 64 | 64 | 64 | 64 | Skip connection | 1 | 1 | 6464 |
|
|