Research Article
A Factorization Deep Product Neural Network for Student Physical Performance Prediction
Table 6
The result of the deep learning benchmark models.
| Different structures | Accuracy | Precision | Recall | F1 | AUC |
| FM | 0.8431 | 0.8552 | 0.9281 | 0.8902 | 0.7933 | DNN | 0.8440 | 0.8554 | 0.9294 | 0.8908 | 0.7939 | DeepFM | 0.8485 | 0.8603 | 0.9297 | 0.8937 | 0.8008 | PNN | 0.8576 | 0.8646 | 0.9392 | 0.9004 | 0.8098 | DNN + PNN | 0.8614 | 0.8660 | 0.9437 | 0.9032 | 0.8131 | FM + PNN | 0.8625 | 0.8670 | 0.9440 | 0.9039 | 0.8147 | FDPN | 0.8668 | 0.8680 | 0.9499 | 0.9071 | 0.8179 |
|
|