Computational Intelligence and Neuroscience / 2022 / Article / Tab 3 / Research Article
One-Class Classification by Ensembles of Random Planes (OCCERPs) Table 3 Average AUCROC of various OCC algorithms against the OCCERP (500) algorithm on various datasets [
28 ,
29 ] presented in Table
1 . Bold numbers indicate the best performance.
Dataset If LOF OCSVM Autoencoder OCCERP (500) Pima 0.731 0.709 0.700 0.648 0.738 segment0 0.474 0.815 0.294 0.342 0.923 Winequality-red-4 0.584 0.651 0.615 0.609 0.655 Winequality-red-8_vs_6 0.667 0.592 0.647 0.681 0.716 Winequality-white-3_vs_7 0.849 0.866 0.853 0.851 0.928 yeast1 0.543 0.615 0.548 0.534 0.589 yeast3 0.673 0.807 0.725 0.728 0.788 yeast4 0.734 0.665 0.733 0.745 0.745 Aloi-unsupervised 0.539 0.748 0.549 0.549 0.556 Annthyroid-unsupervised 0.737 0.907 0.727 0.702 0.766 Breast-cancer-unsupervised 0.982 0.985 0.985 0.982 0.985 Letter-unsupervised 0.627 0.862 0.615 0.526 0.872 Satellite-unsupervised 0.949 0.977 0.937 0.895 0.977 Shuttle-unsupervised 0.995 0.999 0.996 0.993 0.999 Pen-global-unsupervised 0.947 0.957 0.972 0.869 0.998 Pen-local-unsupervised 0.778 0.985 0.589 0.440 0.966 Best performance 0 8 0 1 11