Research Article

[Retracted] BID-Net: An Automated System for Bone Invasion Detection Occurring at Stage T4 in Oral Squamous Carcinoma Using Deep Learning

Table 5

Effect of learning rate on model’s performance.

Learning modelsLearning rateAccuracyF1-scorePrecisionRecallAUC-score

BID-net0.0190.689.1287.6891.3294.58
0.00191.2790.1688.3993.8693.24
0.000 193.6292.639195.1795.9
0.000 0180.272.8577.7770.8893.37
VGG-160.0187.8784.6285.3383.3986.7
0.00185.9582.1282.981.4487.29
0.000 183.1978.3379.5177.484.42
VGG-190.000 0170.7957.8860.8657.5672.04
0.0184.4779.7879.380.3386.01
0.00184.8480.4681.7379.4685.64
0.000 178.7870.5474.3568.8783.23
0.000 0168.8751.855.2252.8870.47

ResNet-500.0183.4779.6679.3380.0384.82
0.00179.3370.8375.5868.9586.87
0.000 184.2979.8880.8679.0889.95
0.000 0185.6782.2782.0882.4790.1
MobileNet0.0184.1679.2380.457988.95
0.00181.5476.3577.2275.6585.59
0.000 182.9277.4379.675.9989
0.000 0176.364.8971.163.580.64
DenseNet1210.0182.6582.0183.5881.1389.18
0.00183.9883.6183.3184.1891.37
0.000 184.4375.383.4272.194.5
0.000 0178.5178.6178.3179.1290.12

ResNet1010.0179.2576.3775.3282.6988.9
0.00178.0969.1370.3168.2889.45
0.000 176.0874.1875.1783.1787.21
0.000 0180.477.0275.5481.988.5