Research Article
[Retracted] Drought Assessment Based on Data Fusion and Deep Learning
Table 2
Copula functions for different stations.
| Location | Station | Gaussian | T | Gumbel | Frank | Clayton | Selected function and parameter θ |
| Upper reaches | Tangnaihai | 1.2443 | 1.2681 | 0.0490 | 0.1151 | 0.4732 | Gumbel copula θ = 1.6008 | Shizuishan | 3.6693 | 3.6773 | 0.0468 | 0.0548 | 0.0812 | Gumbel copula θ = 1.0816 |
| Middle reaches | Longmen | 2.8618 | 2.8965 | 0.1403 | 0.0736 | 0.0639 | Clayton copula θ = 0.4531 | Sanmenxia | 2.3053 | 2.3308 | 0.0545 | 0.0603 | 0.0672 | Gumbel copula θ = 1.2932 |
| Lower reaches | Huayuankou | 3.8682 | 3.8848 | 0.0619 | 0.0542 | 0.0617 | Frank copula θ = 0.6412 | Lijin | 3.9394 | 3.9606 | 0.1140 | 0.0959 | 0.0878 | Clayton copula θ = 0.1540 |
|
|