Research Article
Multiclass Cancer Prediction Based on Copy Number Variation Using Deep Learning
Table 3
The classwise performances of all networks.
| Models | GBM (3) | KIRC(4) | HNSC(5) | COAD/READ(2) | BLCA(1) | BRCA(0) |
| NN | TP rate | 0.68 | 0.96 | 0.82 | 0.98 | 0.83 | 0.93 | ROC area | 0.97 | 0.99 | 0.97 | 1.00 | 0.98 | 0.99 | Precision | 0.77 | 0.90 | 0.92 | 0.93 | 0.81 | 0.97 | F-measure | 0.72 | 0.93 | 0.87 | 0.96 | 0.82 | 0.95 | Recall | 0.68 | 0.96 | 0.82 | 0.98 | 0.83 | 0.93 | FP rate | 0.00 | 0.01 | 0.04 | 0.01 | 0.02 | 0.00 |
| DNN | TP rate | 0.72 | 0.96 | 0.85 | 0.98 | 0.85 | 0.94 | ROC area | 0.97 | 0.98 | 0.99 | 1.00 | 0.98 | 0.99 | Precision | 0.75 | 0.93 | 0.94 | 0.94 | 0.85 | 0.93 | F-measure | 0.73 | 0.94 | 0.89 | 0.96 | 0.85 | 0.94 | Recall | 0.72 | 0.96 | 0.85 | 0.98 | 0.85 | 0.94 | FP rate | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 |
| LSTM | TP rate | 0.52 | 0.95 | 0.85 | 0.98 | 0.88 | 0.92 | ROC area | 0.96 | 0.99 | 0.98 | 1.00 | 0.97 | 1.00 | Precision | 0.87 | 0.91 | 0.93 | 0.92 | 0.79 | 0.95 | F-measure | 0.65 | 0.93 | 0.88 | 0.95 | 0.83 | 0.94 | Recall | 0.68 | 0.94 | 0.84 | 0.96 | 0.79 | 0.91 | FP rate | 0.52 | 0.95 | 0.85 | 0.98 | 0.88 | 0.92 |
| 1D-CNN | TP rate | 0.64 | 0.93 | 0.92 | 0.96 | 0.77 | 0.91 | ROC area | 0.97 | 0.99 | 0.97 | 1.00 | 0.97 | 0.99 | Precision | 0.84 | 0.93 | 0.81 | 0.93 | 0.86 | 0.94 | F-measure | 0.73 | 0.93 | 0.86 | 0.94 | 0.82 | 0.92 | Recall | 0.64 | 0.93 | 0.92 | 0.96 | 0.77 | 0.91 | FP rate | 0.00 | 0.02 | 0.04 | 0.01 | 0.01 | 0.01 |
|
|