Research Article
Multiclass Cancer Prediction Based on Copy Number Variation Using Deep Learning
Table 3
The classwise performances of all networks.
| | Models | GBM (3) | KIRC(4) | HNSC(5) | COAD/READ(2) | BLCA(1) | BRCA(0) |
| | NN | | TP rate | 0.68 | 0.96 | 0.82 | 0.98 | 0.83 | 0.93 | | ROC area | 0.97 | 0.99 | 0.97 | 1.00 | 0.98 | 0.99 | | Precision | 0.77 | 0.90 | 0.92 | 0.93 | 0.81 | 0.97 | | F-measure | 0.72 | 0.93 | 0.87 | 0.96 | 0.82 | 0.95 | | Recall | 0.68 | 0.96 | 0.82 | 0.98 | 0.83 | 0.93 | | FP rate | 0.00 | 0.01 | 0.04 | 0.01 | 0.02 | 0.00 |
| | DNN | | TP rate | 0.72 | 0.96 | 0.85 | 0.98 | 0.85 | 0.94 | | ROC area | 0.97 | 0.98 | 0.99 | 1.00 | 0.98 | 0.99 | | Precision | 0.75 | 0.93 | 0.94 | 0.94 | 0.85 | 0.93 | | F-measure | 0.73 | 0.94 | 0.89 | 0.96 | 0.85 | 0.94 | | Recall | 0.72 | 0.96 | 0.85 | 0.98 | 0.85 | 0.94 | | FP rate | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 |
| | LSTM | | TP rate | 0.52 | 0.95 | 0.85 | 0.98 | 0.88 | 0.92 | | ROC area | 0.96 | 0.99 | 0.98 | 1.00 | 0.97 | 1.00 | | Precision | 0.87 | 0.91 | 0.93 | 0.92 | 0.79 | 0.95 | | F-measure | 0.65 | 0.93 | 0.88 | 0.95 | 0.83 | 0.94 | | Recall | 0.68 | 0.94 | 0.84 | 0.96 | 0.79 | 0.91 | | FP rate | 0.52 | 0.95 | 0.85 | 0.98 | 0.88 | 0.92 |
| | 1D-CNN | | TP rate | 0.64 | 0.93 | 0.92 | 0.96 | 0.77 | 0.91 | | ROC area | 0.97 | 0.99 | 0.97 | 1.00 | 0.97 | 0.99 | | Precision | 0.84 | 0.93 | 0.81 | 0.93 | 0.86 | 0.94 | | F-measure | 0.73 | 0.93 | 0.86 | 0.94 | 0.82 | 0.92 | | Recall | 0.64 | 0.93 | 0.92 | 0.96 | 0.77 | 0.91 | | FP rate | 0.00 | 0.02 | 0.04 | 0.01 | 0.01 | 0.01 |
|
|