Research Article

Multiclass Cancer Prediction Based on Copy Number Variation Using Deep Learning

Table 3

The classwise performances of all networks.

ModelsGBM (3)KIRC(4)HNSC(5)COAD/READ(2)BLCA(1)BRCA(0)

NN
TP rate0.680.960.820.980.830.93
ROC area0.970.990.971.000.980.99
Precision0.770.900.920.930.810.97
F-measure0.720.930.870.960.820.95
Recall0.680.960.820.980.830.93
FP rate0.000.010.040.010.020.00

DNN
TP rate0.720.960.850.980.850.94
ROC area0.970.980.991.000.980.99
Precision0.750.930.940.940.850.93
F-measure0.730.940.890.960.850.94
Recall0.720.960.850.980.850.94
FP rate0.010.020.010.010.010.01

LSTM
TP rate0.520.950.850.980.880.92
ROC area0.960.990.981.000.971.00
Precision0.870.910.930.920.790.95
F-measure0.650.930.880.950.830.94
Recall0.680.940.840.960.790.91
FP rate0.520.950.850.980.880.92

1D-CNN
TP rate0.640.930.920.960.770.91
ROC area0.970.990.971.000.970.99
Precision0.840.930.810.930.860.94
F-measure0.730.930.860.940.820.92
Recall0.640.930.920.960.770.91
FP rate0.000.020.040.010.010.01