Research Article

A Stock Selection Model of Image Classification Method Based on Convolutional Neural Network

Table 1

Results of decision tree under different parameters.

Training sizeLeaf nodesDepthBenchmarkAnnual returnSharp ratioMax drawdown

2450202986415956−0.00730.1946
36502045285538920.024640.2008
4850203571128710.00500.2199
245025298647042−0.00270.2186
36502545285577000.02360.2072
4850253571133672−0.00720.2689
245030298649193−0.00830.1953
36503045285447390.01680.2077
4850303571158850.00780.2010
24302529864430620.00590.2087
36302545285357550.01450.2244
4830253571152590.00510.2631
2450252986410775−0.00200.2065
36502545285498420.01640.1878
485025357111770.00920.2265
246025298642796−0.01360.2071
36602545285357540.01010.2066
48602535711108250.01340.2355