Research Article
A Novel Reformed Reduced Kernel Extreme Learning Machine with RELIEF-F for Classification
Table 4
The performances of Reduced-KELM and Relief-F.
| Data | Model | Accuracy (%) | Difference | SD | Time | Sensitivity | Specificity | Precision |
| German | Reduced-KELM | 71.53 | 8.74% | 0.06 | 0.0013 | 0.5790 | 0.4962 | 0.5175 | | Relief-F | 80.27 | | 0.03 | 0.0012 | 0.5164 | 0.5108 | 0.5068 |
| Image | Reduced-KELM | 85.70 | 0.16% | 0.03 | 0.0086 | 0.8623 | 0.8510 | 0.8555 | | Relief-F | 85.86 | | 0.02 | 0.0063 | 0.8340 | 0.8780 | 0.8815 |
| Ringnorm | Reduced-KELM | 60.06 | 0.85% | 0.02 | 0.1128 | 0.5961 | 0.6079 | 0.7786 | | Relief-F | 60.91 | | 0.01 | 0.1031 | 0.6135 | 0.6075 | 0.7786 |
| Twonorm | Reduced-KELM | 94.10 | -1.65% | 0.01 | 0.1022 | 0.9401 | 0.9377 | 0.9115 | | Relief-F | 92.45 | | 0.01 | 0.0934 | 0.9245 | 0.9216 | 0.8853 |
| Waveform | Reduced-KELM | 84.29 | 0.93% | 0.01 | 0.0474 | 0.8324 | 0.8090 | 0.8148 | | Relief-F | 85.22 | | 0.01 | 0.0384 | 0.8169 | 0.8223 | 0.8160 |
| HAPT | Reduced-KELM | 88.52 | 0.95% | 0.08 | 0.4155 | 0.9580 | 0.9434 | 0.8731 | | Relief-F | 89.47 | | 0.07 | 0.3753 | 0.9552 | 0.8936 | 0.7479 |
| HARUS | Reduced-KELM | 84.02 | 5.66% | 0.07 | 0.3826 | 0.9470 | 0.9419 | 0.8643 | | Relief-F | 89.68 | | 0.06 | 0.3589 | 0.9410 | 0.8851 | 0.7623 |
| Smartphone | Reduced-KELM | 85.52 | 1.03% | 0.07 | 0.1261 | 0.7749 | 0.7535 | 0.7280 | | Relief-F | 86.55 | | 0.07 | 0.0951 | 0.7869 | 0.7926 | 0.7532 |
|
|