Research Article

A Novel Reformed Reduced Kernel Extreme Learning Machine with RELIEF-F for Classification

Table 5

The performance between relief-F and RKELM with two sample selection methods.

DataModelAccuracy (%)SDTimeSensitivitySpecificityPrecision

GermanK-RKELM83.530.010.00110.55310.58810.6045
C-RKELM81.670.020.04190.91570.15380.8787
R-RKELM85.440.010.00560.67530.39400.7184

ImageK-RKELM87.430.010.00630.86940.87360.8816
C-RKELM87.700.000.26100.96340.78190.8294
R-RKELM87.750.000.25360.90400.84240.8700

RingnormK-RKELM55.320.000.12650.55560.55410.7634
C-RKELM67.660.0010.21671.00000.35550.6064
R-RKELM69.370.006.10880.79860.59100.7454

TwonormK-RKELM94.520.000.14820.93820.93930.9195
C-RKELM95.230.009.15330.93850.95660.8735
R-RKELM95.350.005.76550.94790.95390.9096

WaveformK-RKELM85.510.010.03050.84540.82580.8298
C-RKELM85.470.003.76820.87570.81170.9045
R-RKELM85.840.001.60290.85940.83440.8597

HAPTK-RKELM89.500.090.39970.97090.89140.7367
C-RKELM90.580.0618.85310.89320.83090.7481
R-RKELM92.870.0624.17480.97600.91970.7869

HARUSK-RKELM89.790.080.32530.96180.89450.7552
C-RKELM88.830.0020.16230.84680.88980.6087
R-RKELM92.810.0520.16960.96490.92210.8029

SmartphoneK-RKELM86.680.060.21970.80550.78880.7092
C-RKELM86.680.005.64650.79450.80570.7178
R-RKELM86.920.061.38000.81260.80900.7268