Research Article
A Novel Reformed Reduced Kernel Extreme Learning Machine with RELIEF-F for Classification
Table 5
The performance between relief-F and RKELM with two sample selection methods.
| Data | Model | Accuracy (%) | SD | Time | Sensitivity | Specificity | Precision |
| German | K-RKELM | 83.53 | 0.01 | 0.0011 | 0.5531 | 0.5881 | 0.6045 | | C-RKELM | 81.67 | 0.02 | 0.0419 | 0.9157 | 0.1538 | 0.8787 | | R-RKELM | 85.44 | 0.01 | 0.0056 | 0.6753 | 0.3940 | 0.7184 |
| Image | K-RKELM | 87.43 | 0.01 | 0.0063 | 0.8694 | 0.8736 | 0.8816 | | C-RKELM | 87.70 | 0.00 | 0.2610 | 0.9634 | 0.7819 | 0.8294 | | R-RKELM | 87.75 | 0.00 | 0.2536 | 0.9040 | 0.8424 | 0.8700 |
| Ringnorm | K-RKELM | 55.32 | 0.00 | 0.1265 | 0.5556 | 0.5541 | 0.7634 | | C-RKELM | 67.66 | 0.00 | 10.2167 | 1.0000 | 0.3555 | 0.6064 | | R-RKELM | 69.37 | 0.00 | 6.1088 | 0.7986 | 0.5910 | 0.7454 |
| Twonorm | K-RKELM | 94.52 | 0.00 | 0.1482 | 0.9382 | 0.9393 | 0.9195 | | C-RKELM | 95.23 | 0.00 | 9.1533 | 0.9385 | 0.9566 | 0.8735 | | R-RKELM | 95.35 | 0.00 | 5.7655 | 0.9479 | 0.9539 | 0.9096 |
| Waveform | K-RKELM | 85.51 | 0.01 | 0.0305 | 0.8454 | 0.8258 | 0.8298 | | C-RKELM | 85.47 | 0.00 | 3.7682 | 0.8757 | 0.8117 | 0.9045 | | R-RKELM | 85.84 | 0.00 | 1.6029 | 0.8594 | 0.8344 | 0.8597 |
| HAPT | K-RKELM | 89.50 | 0.09 | 0.3997 | 0.9709 | 0.8914 | 0.7367 | | C-RKELM | 90.58 | 0.06 | 18.8531 | 0.8932 | 0.8309 | 0.7481 | | R-RKELM | 92.87 | 0.06 | 24.1748 | 0.9760 | 0.9197 | 0.7869 |
| HARUS | K-RKELM | 89.79 | 0.08 | 0.3253 | 0.9618 | 0.8945 | 0.7552 | | C-RKELM | 88.83 | 0.00 | 20.1623 | 0.8468 | 0.8898 | 0.6087 | | R-RKELM | 92.81 | 0.05 | 20.1696 | 0.9649 | 0.9221 | 0.8029 |
| Smartphone | K-RKELM | 86.68 | 0.06 | 0.2197 | 0.8055 | 0.7888 | 0.7092 | | C-RKELM | 86.68 | 0.00 | 5.6465 | 0.7945 | 0.8057 | 0.7178 | | R-RKELM | 86.92 | 0.06 | 1.3800 | 0.8126 | 0.8090 | 0.7268 |
|
|