Research Article

Cross-Corpus Speech Emotion Recognition Based on Transfer Learning and Multi-Loss Dynamic Adjustment

Table 1

A brief summary of related work.

ReferencesYearMethodsFeaturesCorpus

Zong et al. [13]2016Least squares regressionINTERSPEECH 2009Berlin, AFEW 4.0, eNTERFACE
Liu et al. [14]2018Feature selection + SVMINTERSPEECH 2009Berlin, AFEW 4.0, eNTERFACE
Luo et al. [15]2019NMF + MMDSegmental featuresBerlin, CASIA, eNTERFACE, Estonian
Song [16]2019TLSLINTERSPEECH 2010Berlin, FAU-AIBO, eNTERFACE
Zhang et al. [17]2020TSDSLINTERSPEECH 2010Berlin, BAUM-1a, eNTERFACE
Zhang et al. [18]2021JDARINTERSPEECH 2010Berlin, CASIA, eNTERFACE
Zehra et al. [19]2021Ensemble learningSpectral and prosodicSAVEE, UrduRDU, EMO-DB, EMOVO
Latif et al. [28]2018DBNseGeMAPS feature setFAU-AIBO, SAVEE IEMOCAP, EMO-DB, EMOVO
Zhang et al. [29]2019Deep metric learningLog Mel-frequencyfilter-bank energyIEMOCAP, MSP-improv
Ahn et al. [30]2021Few-shot learningINTERSPEECH 2010IEMOCAP, CREMA-D, MSP-IMPROV,Berlin, Korean multimodal emotion dataset
Chang et al. [31]2021Adversarial learningINTERSPEECH 2010IEMOCAP, MSP-improv, MSP-PODCAST
Sneha et al. [32]2022VAE with KL annealingeGeMAPS feature setIEMOCAP, SAVEE, Berlin, CaFE, URDU, AESD