| References | Year | Methods | Features | Corpus |
| Zong et al. [13] | 2016 | Least squares regression | INTERSPEECH 2009 | Berlin, AFEW 4.0, eNTERFACE | Liu et al. [14] | 2018 | Feature selection + SVM | INTERSPEECH 2009 | Berlin, AFEW 4.0, eNTERFACE | Luo et al. [15] | 2019 | NMF + MMD | Segmental features | Berlin, CASIA, eNTERFACE, Estonian | Song [16] | 2019 | TLSL | INTERSPEECH 2010 | Berlin, FAU-AIBO, eNTERFACE | Zhang et al. [17] | 2020 | TSDSL | INTERSPEECH 2010 | Berlin, BAUM-1a, eNTERFACE | Zhang et al. [18] | 2021 | JDAR | INTERSPEECH 2010 | Berlin, CASIA, eNTERFACE | Zehra et al. [19] | 2021 | Ensemble learning | Spectral and prosodic | SAVEE, UrduRDU, EMO-DB, EMOVO | Latif et al. [28] | 2018 | DBNs | eGeMAPS feature set | FAU-AIBO, SAVEE IEMOCAP, EMO-DB, EMOVO | Zhang et al. [29] | 2019 | Deep metric learning | Log Mel-frequencyfilter-bank energy | IEMOCAP, MSP-improv | Ahn et al. [30] | 2021 | Few-shot learning | INTERSPEECH 2010 | IEMOCAP, CREMA-D, MSP-IMPROV,Berlin, Korean multimodal emotion dataset | Chang et al. [31] | 2021 | Adversarial learning | INTERSPEECH 2010 | IEMOCAP, MSP-improv, MSP-PODCAST | Sneha et al. [32] | 2022 | VAE with KL annealing | eGeMAPS feature set | IEMOCAP, SAVEE, Berlin, CaFE, URDU, AESD |
|
|