Research Article

An Attribute Extraction for Automated Malware Attack Classification and Detection Using Soft Computing Techniques

Table 6

Various attitudes for selecting features in relation to classification techniques for 100% training.

Attribute extractionNo. of attributesANN (Acc, TPR, FPR, TNR, FNR) (%)Decision tree (Acc, TPR, FPR, TNR, FNR) (%)Naive Bayes (Acc, TPR, FPR, TNR, FNR) (%)SVM (Acc, TPR,FPR, TNR, FNR) (%)

CFsSubset2589.991.387.993.3
100100100100
11.9131510
86.88888.990
0000

PCA5587.993.588.994.8
63.8777496
54116
94.8979198
34.722250

GainRatioAttribute20190.593.886.794.5
1100100100
910178
90898691
0000

SymmetricalUncertAttributeEval14693.593.889.395.5
100100100100
9.910118
88.789.68391
0000