Research Article

An Attribute Extraction for Automated Malware Attack Classification and Detection Using Soft Computing Techniques

Table 7

Different techniques for selecting features in relation to classification techniques that use 80% of the information for trained and 20% for tests.

Attribute extractionNo. of attributesANN (Acc, TPR, FPR, TNR, FNR)Decision tree (Acc, TPR,FPR, TNR, FNR)Naive Bayes (Acc, TPR, FPR, TNR, FNR) (%)SVM (Acc, TPR, FPR, TNR, FNR) (%)
(%)(%)

CFsSubset2595.4979398.5
100100100100
3693
94968996
0000

PCA5596.495.891.597.7
100939391
4790
95988898
0768

GainRatioAttribute20195.797.387.997.5
100100100100
63135
8978497
0000

SymmetricalUncertAttributeEval14694.694.390.597.9
100100100100
56123
94938596
0000