Research Article

[Retracted] A Neighborhood and Machine Learning-Enabled Information Fusion Approach for the WSNs and Internet of Medical Things

Algorithm 1

NCDAS Algorithm.
(1)Input: Analysis of neighbors nodes in IoTs (N_v ∈ IoTs)
(2)Output: Elimination of redundant data based on neighbors nodes in IoTs (N_v ∈ IoTs)
(3)begin
(4)Ordinary nodes N_n = {0, 1, 2, 3, N_n} with MAC address value and location
(5)Clusters K_n = {K_1, K_2. . . K_n_ - _1}
(6)  While every k_i ∈ IoTs do
(7)   Generate a message
(8)   Set a join request value 1
(9)   Broadcast message
(10)  end while
(11) While every Node(i) ∈ IoTs do
(12) If RSSI(k_i ≥ K_i + 1.....n) then
(13)  Update the message
(14)  Set destination K_i
(15)  Backoff Timer = rand(20–1000 milliseconds)
(16)  Re-broadcast message
(17)  end if
(18) end while
(19)While Nodes ∈ k_i do
(20) Calculate Euclidean distance(Ed) among all nodes
(21)  If (Ed of Node(i)and(j) is ≤ td) then
(22)   Both nodes I and j are neighbors
(23)   Check data redundancy among
(24)   Eliminate redundant data captured by node
(25)  else
(26)  Both nodes I and j are not neighbors
(27) end if
(28) end while
(29)While Node(i) ∈ K_i do
(30) If Node(i).data ≤ threshold then
(31)  Aggregate data using k-mean or SVM
(32)  Send aggregate data to the Base station
(33) else
(34)  Discard data
(35) end if
(36)end while