Research Article
Multiscale Traffic Sign Detection Method in Complex Environment Based on YOLOv4
Table 1
Comparison of proposed and other methods.
| Model | mAPNoChallenge | mAPRain | mAPSnow | mAPFog | mAPLensBlur | mAP | FPS |
| Faster-RCNN | 88.86 | 70.51 | 71.07 | 69.28 | 73.05 | 82.59 | 24 | SSD | 78.71 | 61.54 | 63.56 | 60.97 | 64.58 | 72.12 | 51 | RetinaNet | 78.07 | 59.55 | 60.91 | 63.89 | 64.76 | 71.84 | 53 | YOLOv3 | 80.18 | 63.94 | 63.83 | 62.81 | 66.25 | 74.32 | 58 | YOLOv4-tiny | 79.11 | 61.57 | 61.45 | 60.32 | 63.59 | 72.03 | 142 | YOLOv4 | 83.92 | 66.62 | 67.14 | 65.59 | 69.26 | 77.25 | 86 | Ours | 87.19 | 73.22 | 74.02 | 72.50 | 76.41 | 81.78 | 74 |
|
|