Research Article

Speckle Noise Removal Model Based on Diffusion Equation and Convolutional Neural Network

Table 3

PSNR results of different models on test images.

Test imageIIIIIIIVVVIVIIVIIIAverage

Noise level σ = 2
Proposed29.7431.8931.0031.6729.3131.3033.6430.5931.14
SARD26.1528.4327.9328.1026.4328.5330.0127.7128.23
VA26.3228.9628.0128.3126.7728.6930.2827.8228.51
DnCNN29.6531.8830.9531.6629.2331.2433.6330.5731.10
RED-net28.5130.3929.1429.9728.0729.7332.0729.1429.63
Noise level σ = 3
Proposed27.4230.0329.1029.6627.3029.3732.0528.7929.21
SARD26.7827.5426.0725.7823.1225.6527.5124.1725.61
VA24.1125.7425.4825.9823.7725.8727.9824.7625.91
DnCNN27.3629.8529.0929.6427.1429.3031.9428.7729.14
RED-net26.7528.8727.2728.2826.4328.2030.3927.7828.06
Noise level σ = 4
Proposed25.8228.4327.7228.3925.9727.8830.5827.5227.78
SARD23.1325.4124.8325.5123.1724.8227.3224.7625.01
VA23.5125.6225.1425.8623.6725.2127.8825.0325.62
DnCNN25.6528.3327.7828.1225.8127.6230.4027.4827.64
RED-net30.3127.9427.0827.6125.4827.0529.5327.0027.14