Computational Intelligence and Neuroscience / 2022 / Article / Tab 1 / Research Article
A Hybrid Approach for MS Diagnosis Through Nonlinear EEG Descriptors and Metaheuristic Optimized Classification Learning Table 1 Assessments of accuracy in different data dividing situations and with/without feature selection strategy and change in the type of features. The bold values are the best measures achieved.
Data dividing Type of features Without feature selection With feature selection Best value Mean value Worst value Best value Mean value Worst value 10-fold (1) Statistical 0.93 ± (0.05) 0.90 ± (0.06) 0.88 ± (0.09) 0.96 ± (0.03) 0.94 ± (0.05) 0.93 ± (0.06) Fractals 0.91 ± (0.05) 0.90 ± (0.06) 0.88 ± (0.09) 0.97 ± (0.03) 0.94 ± (0.05) 0.93 ± (0.05) Hybrid 0.93 ± (0.04) 0.91 ± (0.05) 0.89 ± (0.08) 0.98 ± (0.02) 0.95 ± (0.03) 0.94 ± (0.05) 10-fold (2) Statistical 0.93 ± (0.04) 0.92 ± (0.07) 0.88 ± (0.08) 0.96 ± (0.02) 0.95 ± (0.04) 0.94 ± (0.05) Fractals 0.93 ± (0.04) 0.91 ± (0.07) 0.88 ± (0.09) 0.98 ± (0.02) 0.95 ± (0.04) 0.94 ± (0.05) Hybrid 0.93 ± (0.05) 0.91 ± (0.06) 0.89 ± (0.08) 0.98 ± (0.01) 0.96 ± (0.02) 0.94 ± (0.04) 10-fold (3) Statistical 0.92 ± (0.05) 0.90 ± (0.05) 0.87 ± (0.08) 0.95 ± (0.02) 0.94 ± (0.05) 0.93 ± (0.05) Fractals 0.92 ± (0.05) 0.91 ± (0.05) 0.88 ± (0.09) 0.97 ± (0.02) 0.95 ± (0.04) 0.94 ± (0.04) Hybrid 0.92 ± (0.05) 0.91 ± (0.04) 0.88 ± (0.08) 0.98 ± (0.01) 0.97 ± (0.02) 0.94 ± (0.05) 10-fold (4) Statistical 0.93 ± (0.06) 0.91 ± (0.06) 0.88 ± (0.08) 0.96 ± (0.03) 0.95 ± (0.05) 0.94 ± (0.03) Fractals 0.92 ± (0.04) 0.90 ± (0.06) 0.89 ± (0.08) 0.97 ± (0.03) 0.95 ± (0.05) 0.93 ± (0.05) Hybrid 0.93 ± (0.05) 0.92 ± (0.06) 0.89 ± (0.07) 0.98 ± (0.02) 0.97 ± (0.03) 0.94 ± (0.04) 10-fold (5) Statistical 0.92 ± (0.04) 0.91 ± (0.07) 0.87 ± (0.08) 0.96 ± (0.03) 0.94 ± (0.05) 0.93 ± (0.05) Fractals 0.93 ± (0.04) 0.90 ± (0.08) 0.88 ± (0.07) 0.97 ± (0.03) 0.96 ± (0.04) 0.94 ± (0.05) Hybrid 0.93 ± (0.03) 0.92 ± (0.07) 0.88 ± (0.07) 0.98 ± (0.02) 0.97 ± (0.02) 0.95 ± (0.03)