Research Article

A Hybrid Approach for MS Diagnosis Through Nonlinear EEG Descriptors and Metaheuristic Optimized Classification Learning

Table 1

Assessments of accuracy in different data dividing situations and with/without feature selection strategy and change in the type of features. The bold values are the best measures achieved.

Data dividingType of featuresWithout feature selectionWith feature selection
Best valueMean valueWorst valueBest valueMean valueWorst value

10-fold (1)Statistical0.93 ± (0.05)0.90 ± (0.06)0.88 ± (0.09)0.96 ± (0.03)0.94 ± (0.05)0.93 ± (0.06)
Fractals0.91 ± (0.05)0.90 ± (0.06)0.88 ± (0.09)0.97 ± (0.03)0.94 ± (0.05)0.93 ± (0.05)
Hybrid0.93 ± (0.04)0.91 ± (0.05)0.89 ± (0.08)0.98 ± (0.02)0.95 ± (0.03)0.94 ± (0.05)

10-fold (2)Statistical0.93 ± (0.04)0.92 ± (0.07)0.88 ± (0.08)0.96 ± (0.02)0.95 ± (0.04)0.94 ± (0.05)
Fractals0.93 ± (0.04)0.91 ± (0.07)0.88 ± (0.09)0.98 ± (0.02)0.95 ± (0.04)0.94 ± (0.05)
Hybrid0.93 ± (0.05)0.91 ± (0.06)0.89 ± (0.08)0.98 ± (0.01)0.96 ± (0.02)0.94 ± (0.04)

10-fold (3)Statistical0.92 ± (0.05)0.90 ± (0.05)0.87 ± (0.08)0.95 ± (0.02)0.94 ± (0.05)0.93 ± (0.05)
Fractals0.92 ± (0.05)0.91 ± (0.05)0.88 ± (0.09)0.97 ± (0.02)0.95 ± (0.04)0.94 ± (0.04)
Hybrid0.92 ± (0.05)0.91 ± (0.04)0.88 ± (0.08)0.98 ± (0.01)0.97 ± (0.02)0.94 ± (0.05)

10-fold (4)Statistical0.93 ± (0.06)0.91 ± (0.06)0.88 ± (0.08)0.96 ± (0.03)0.95 ± (0.05)0.94 ± (0.03)
Fractals0.92 ± (0.04)0.90 ± (0.06)0.89 ± (0.08)0.97 ± (0.03)0.95 ± (0.05)0.93 ± (0.05)
Hybrid0.93 ± (0.05)0.92 ± (0.06)0.89 ± (0.07)0.98 ± (0.02)0.97 ± (0.03)0.94 ± (0.04)

10-fold (5)Statistical0.92 ± (0.04)0.91 ± (0.07)0.87 ± (0.08)0.96 ± (0.03)0.94 ± (0.05)0.93 ± (0.05)
Fractals0.93 ± (0.04)0.90 ± (0.08)0.88 ± (0.07)0.97 ± (0.03)0.96 ± (0.04)0.94 ± (0.05)
Hybrid0.93 ± (0.03)0.92 ± (0.07)0.88 ± (0.07)0.98 ± (0.02)0.97 ± (0.02)0.95 ± (0.03)