Research Article
Exploration of Black Boxes of Supervised Machine Learning Models: A Demonstration on Development of Predictive Heart Risk Score
Table 1
Performance assessment of ML models for the development of NLHRS.
| Models | ANN | Linear SVM | RBF SVM | Random forest | LR | Confusion matrix | Case | Control | Case | Control | Case | Control | Case | Control | Case | Control |
| Case | 185 | 45 | 187 | 43 | 187 | 43 | 191 | 39 | 188 | 42 | Control | 35 | 195 | 46 | 184 | 50 | 180 | 56 | 174 | 50 | 180 | Accuracy | 82.61 | | 80.65 | | 79.80 | | 79.30 | | 80.00 | | Sensitivity | 0.791 | | 0.813 | | 0.813 | | 0.830 | | 0.817 | | Specificity | 0.848 | | 0.800 | | 0.783 | | 0.757 | | 0.783 | | Kappa statistic | 0.653 | | 0.613 | | 0.595 | | 0.587 | | 0.600 | | AUC | 0.883 | | 0.881 | | 0.870 | | 0.857 | | 0.873 | | RMSE | 0.365 | | 0.372 | | 0.379 | | 0.411 | | 0.380 | | Number of criteria fulfilled | 5/6 | 5/6 | 1/6 | 1/6 | Baseline risk prediction model |
|
|