Research Article
Dynamic and Static Features-Aware Recommendation with Graph Neural Networks
Table 4
Performance of compared with different variants of DSAGR (“—” indicates DSAGR removes the key technology).
| Variants | Dynamic preference | Dynamic feature | ML-100k | ML_1M | Long-term | Short-term | Recall@N | NDCG@N | Recall@N | NDCG@N |
| DSAGR-S | — | GCN | CNN | 0.36013 | 0.44148 | 0.2891 | 0.3214 | DSAGR-L | GCN | — | CNN | 0.36370 | 0.32779 | 0.3000 | 0.3325 | DSAGR-G | GCN | — | — | 0.33217 | 0.4041 | 0.2345 | 0.2911 | DSAGR-D | GCN | GCN | — | 0.36006 | 0.44097 | 0.2798 | 0.3154 | DSAGR-DL | GCN | GCN | LSTM | 0.36184 | 0.44274 | 0.2921 | 0.3255 | DSAGR-DG | GCN | GCN | GRU | 0.36456 | 0.44921 | 0.2966 | 0.3310 | DSAGR | GCN | GCN | CNN | 0.3672 | 0.4470 | 0.3054 | 0.3421 |
|
|